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ASYMPTOTICS FOR d-FOLD PARTITION DIAMONDS AND

RELATED INFINITE PRODUCTS

KATHRIN BRINGMANN, WILLIAM CRAIG, AND JOSHUA MALES

Abstract. We prove an asymptotic formula for the number of d-fold partition
diamonds of n and their Schmidt-type counterparts. In order to do so, we study
the asymptotic behavior of certain infinite products. We also remark on interesting
potential connections with mathematical physics and Bloch groups.

1. Introduction and statement of results

A partition of a non-negative integer n is a finite sequence λ = (a0, a1, · · · , ak) of
positive integers such that |λ| := a0 + a1 + · · · + ak = n. The theory of partitions
has a long and rich history in combinatorics and number theory, which is overviewed
in Andrews’ book [3]. In this paper, we are primarily concerned with the asymptotic
properties of partitions. The modern viewpoint on this study began with the famous
paper of Hardy and Ramanujan [17], in which they studied the function p(n) which
counts the number of partitions of n and proved that

p(n) ∼ 1

4n
√
3
eπ
√

2n
3 (as n → ∞).

They showed this theorem by developing the Circle Method, which has since spawned
a huge number of variations with applications across all of analytic number theory.

In 2001, Andrews, Paule, and Riese [8] reinitiated the study of partition analysis, an
algebraic framework designed by MacMahon for the deduction of generating functions
for different kinds of plane partitions. This began a long series of papers from Andrews
and collaborators on this topic, including papers on hypergeometric multisums [4],
magic squares [10] and recently partitions with n copies of n [6]. In particular, this
new research spawned a great interest in plane partition diamonds. A plane partition
diamond (or just a partition diamond) as defined in [7] is a pair of sequences of integers
{aj}j≥0, {bj}j≥0 such that for every j ∈ N0 we have aj ≥ max{b2j , b2j+1} ≥ aj+1. The
naming convention of partition diamonds comes from the fact that these can be
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represented graphically as a kind of directed graph of diamonds, with the direction of
edges denoting the inequalities imposed. Partition diamonds have been the subject of
many very interesting studies; for example, they give examples of modular forms [5, 9],
and their generalizations exhibit interesting congruence properties [7, 13, 23, 24].

In this paper, we consider a recent generalization of plane partition diamonds. In
[16], a d-fold partition diamond is defined as a collection of non-negative integer se-
quences {ak}k≥0, {bj,k}k≥0, 0≤j≤d−1 such that for every k ∈ N0, we have the inequalities
ak ≥ max

0≤j≤d−1
bj,k ≥ ak+1. Observe that standard integer partitions can be viewed as

1-fold partition diamonds, and the previously defined plane partition diamonds can
be viewed as 2-fold partition diamonds. The inequalities exhibited by a d-fold parti-
tion diamond can also be represented cleanly with a directed graph; we exhibit how
this works for 4-fold diamond partitions below.

a0 a1 a2 a3

b0,0

b1,0

b2,0

b3,0

b0,1

b1,1

b2,1

b3,1

b0,2

b1,2

b2,2

b3,2

In line with recent work on Schmidt-type partitions of n [6], we define the Schmidt
size of a d-fold partition diamond {ak}k≥0, {bj,k}k≥0, 0≤j≤d−1 as the size of the sub-
partition {ak}k≥0; in terms of the directed graph above, the Schmidt size of a d-fold
partition diamond is the sum of the central nodes. Questions related to Schmidt-
style modified size functions on partitions have been popular recently in the theory
of partitions [2, 15, 19, 20].

In this paper, we consider the functions that count d-fold partition diamonds of
size n and Schmidt size n and compute their asymptotic expansions. In line with [16],
we define by rd(n) the number of d-fold partition diamonds of n and we let sd(n) be
the number of d-fold partition diamonds with Schmidt size n. In order to state these
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asymptotic formulas, we need to define certain constants. Let

Cd :=

∫ ∞

0

log
(
Ad

(
e−x

))
dx,

with Ad(x) the Eulerian polynomials defined in (3.2). Then we have the following.

Theorem 1.1. As n → ∞ we have that

sd(n) ∼

(
Cd +

π2(d+1)
6

) d
4
+ 1

2

√
2(2π)

d
2
+1
√
d!n

d
4
+1

e
2

√

(

Cd+
π2(d+1)

6

)

n
.

Our second main result is the following theorem.

Theorem 1.2. As n → ∞ we have that

rd(n) ∼

(
Cd

d+1
+ π2

6

) 1
2
e

d−1
2(d+1)

d!

2
√
2πd!

d
2(d+1)n

e
2

√

(

Cd
d+1

+π2

6

)

n
.

The remainder of our paper is laid out as follows. In Section 2 we outline the main
asymptotic techniques we apply in our analysis. In Section 3, we explain certain
preliminary facts about Eulerian polynomials and certain two-variable deformations
of Eulerian polynomials given in [16], and give evaluations of certain integrals which
emerge in the process of proving the main theorems. In Sections 4 and 5, we prove
Theorems 1.1 and 1.2, respectively, as well as very broad generalizations of these
results. Finally, in Section 6 we discuss some final remarks, including possible appli-
cations to physics and connections of certain constants in our formulas with an open
question about Bloch groups.
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2. Asymptotic techniques

2.1. A variation of Euler–Maclaurin summation. We say that a function f is
of sufficient decay in an (unbounded) domain D ⊂ C if there exists some ε > 0 such
that f(w) ≪ w−1−ε as |w| → ∞ in D. We need to use a version of Euler–Maclaurin
summation which has been popularized by Zagier [26]. We quote Theorem 1.2 of [12]
which follows from the Euler–Maclaurin summation formula.
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Proposition 2.1. Suppose that 0 ≤ θ < π
2

and let Dθ := {reiα : r ≥ 0 and |α| ≤ θ}.
Let f : C → C be holomorphic in a domain containing Dθ, so that in particular f is
holomorphic at the origin, and assume that f and all of its derivatives are of sufficient
decay. Then for a ∈ R and N ∈ N0,

∑

m≥0

f((m+ a)w) =
If
w

−
N−1∑

n=0

Bn+1(a)f
(n)(0)

(n + 1)!
wn +ON

(
wN

)
,

uniformly, as w → 0 in Dθ. Here If :=
∫∞
0

f(x)dx.

We also require the more general result, which is given in the proof of Theorem 1.2
of [12] (see equation (5.8) there).

Proposition 2.2. Assume the conditions from Proposition 2.1 are satisfied. We have
for any N ∈ N that

∑

m≥0

f((m+ a)w) =
If
w

−
N−1∑

n=0

Bn+1(a)f
(n)(0)

(n+ 1)!
wn −

∑

k≥N

f (k)(0)ak+1

(k + 1)!
wk

−wN

2πi

N−1∑

n=0

Bn+1(0)a
N−n

(n + 1)!

∫

CR(0)

f (n)(z)

zN−n(z − aw)
dz−(−w)N−1

∫ w∞

aw

f (N)(z)B̃N

(
z
w
− a

)

N !
dz,

where B̃n(x) := Bn(x− ⌊x⌋) and CR(0) denotes the circle of radius R centred at the
origin, where R is such that f is holomorphic in CR(0).

2.2. Ingham’s Tauberian theorem. In order to compute the asymptotic behavior
of the coefficients sd(n) and rd(n) as n → ∞, we make use of a Tauberian Theorem
variant proved by Jennings-Shaffer, Mahlburg, and the first author, following work
of Ingham. In essence, for generating functions carrying certain analytic properties1

this gives an easy-to-use method of obtaining the main-term asymptotic of its Fourier
coefficients. We quote the special case α = 0 of Theorem 1.1 of [12], which follows
from Ingham’s Theorem [18].

Proposition 2.3. Let B(q) =
∑

n≥0 b(n)q
n be a power series with non-negative real

coefficients and radius of convergence at least one and that the b(n) are weakly in-
creasing. Assume that λ, β, γ ∈ R with γ > 0 exist such that

B
(
e−t

)
∼ λtβe

γ
t as t → 0+, B

(
e−z

)
≪ |z|βe

γ
|z| as z → 0, (2.1)

1The second condition is often dropped in (2.1) which makes the proposition unfortunately in-
correct (see [12]).
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with z = x + iy (x, y ∈ R, x > 0) in each region of the form |y| ≤ ∆x for ∆ > 0.
Then

b(n) ∼ λγ
β
2
+ 1

4

2
√
πn

β
2
+ 3

4

e2
√
γn as n → ∞.

To use Proposition 2.3 to study the asymptotic growth of rd(n) and sd(n), we need
to verify that these are weakly increasing. We quickly prove that these properties
hold.

Lemma 2.4. For d ∈ N, the sequences sd(n) and rd(n) are weakly increasing.

Proof. Let Rd(n) and Sd(n) be the collections of d-fold partition diamonds of size and
Schmidt-size n, respectively, so that rd(n) = |Rd(n)| , sd(n) = |Sd(n)|. It is enough
to construct injections Rd(n) →֒ Rd(n + 1) and Sd(n) →֒ Sd(n + 1). Such a map is
immediately furnished in both cases by that function which takes a d-fold diamond
partition ({ak}k≥0, {bj,k}j,k) and adds 1 to a0 and leaves all other part sizes fixed. �

3. Preliminaries

3.1. Asymptotics of the q-Pochhammer symbol. We recall the famous asymp-
totic formula for the inverse of q-Pochhammer symbol, which follows from the mod-
ularity of the Dedekind η-function, and is given by

1

(e−z; e−z)∞
∼

√
z

2π
e

π2

6z as z → 0. (3.1)

3.2. Eulerian polynomials. We consider here the Eulerian polynomials, which we
denote by Ad(x), and some of their basic properties. For more properties and proofs,
see [22, 26.14]. These polynomials can be defined by the power series identity

∑

j≥0

(j + 1)d xj =
Ad(x)

(1− x)d+1
. (3.2)

Based on this property, these polynomials can also be defined recursively by A0(x) = 1
and for each d ∈ N,

Ad(x) = (1 + (d− 1)x)Ad−1(x) + x(1− x)A′
d−1(x). (3.3)

The first few Eulerian polynomials are

A1(x) = 1, A2(x) = 1 + x, A3(x) = 1 + 4x+ x2.

We require a few special values of these polynomials. In particular, by induction on
d it is not hard to prove that

Ad(1) = d!. (3.4)
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We also obtain by differentiating (3.3) and induction on d that2

A′
d(1) =

(d− 1) · d!
2

. (3.5)

We need to use an important and well-known symmetry property of the Eulerian
polynomials: for d ∈ N, we have

Ad(x) = xd−1Ad

(
1

x

)
. (3.6)

We make use of the following lemma, which follows directly from (3.2).

Lemma 3.1. For d ∈ N, Ad(x) has no zeros in [0, 1].

3.3. Deformed Eulerian polynomials. In order to analyze d-fold partition dia-
monds, we need to consider certain polynomials Fd(x, y) which were introduced in
[16]. These polynomials are defined recursively by

F1(x, y) = 1, Fd(x, y) =

(
1− xyd

)
Fd−1(x, y)− y (1− x)Fd−1(xy, y)

1− y
.

The first cases are

F2(x, y) = 1 + xy, F3(x, y) = 1 + 2xy + 2xy2 + x2y3.

For later convenience, we set

Hd(x, y) :=
(
1− xyd

)
Fd−1(x, y)− y (1− x)Fd−1(xy, y),

so that Fd(x, y) = Hd(x,y)
1−y

. We refer to Fd(x, y) as a deformation of the Eulerian
polynomials because of the following lemma.

Lemma 3.2. We have for d ∈ N that Fd(x, 1) = Ad(x).

Proof. For this proof and for later convenience, we observe that by simple differenti-
ation rules that

−H
(0,1)
d (x, y) = dxyd−1Fd−1(x, y)−

(
1− xyd

)
F

(0,1)
d−1 (x, y) + (1− x)Fd−1(xy, y)

+ xy(1− x)F
(1,0)
d−1 (xy, y) + y(1− x)F

(0,1)
d−1 (xy, y). (3.7)

Now, Fd(x, 1) = lim
y→1

Hd(x,y)
1−y

, and we can apply L’Hopitals rule to obtain

Fd(x, 1) = − lim
y→1

H
(0,1)
d (x, y) = (1 + (d− 1)x)Fd−1(x, 1) + x (1− x)F

(1,0)
d−1 (x, 1).

Observing that this recurrence matches (3.3) and that F1(x, 1) = A1(x) = 1, the
claim follows. �

2We note that A′

d
(1) are known as the Lah numbers (OEIS A001286).



ASYMPTOTICS FOR d-FOLD PARTITION DIAMONDS 7

We need a brief lemma which specifies that Fd(x, y) does not have zeros of a certain
type. This lemma follows by combining the fact that Fd(x, y) is continuous with
Lemma 3.1 and Lemma 3.2.

Lemma 3.3. For d ∈ N, there exists a neighborhood Nd of y = 1 such that Fd(x, y) 6=
0 for all x ∈ [0, 1] and y ∈ Nd.

We also need a certain differential equation satisfied by Fd(x, y), which is centrally
important for the evaluation of the asymptotic expansion of rd(n).

Lemma 3.4. We have for d ∈ N that

F
(0,1)
d (x, 1) =

dx

2
F

(1,0)
d (x, 1).

Proof. We prove this claim by induction on d. The identity is clear for d = 1. We
next assume that for fixed d ≥ 2, the claim holds. We next reduce the claim to an
expression in terms of Hd(x, y). By using L’Hopital’s rule, it is not hard to see that

F
(1,0)
d (x, 1) = lim

y→1

H
(1,0)
d (x, y)

1− y
= −H

(1,1)
d (x, 1),

F
(0,1)
d (x, 1) = lim

y→1

(1− y)H
(0,1)
d (x, y) +Hd(x, y)

(1− y)2
= −1

2
H

(0,2)
d (x, 1).

Therefore, in order to prove the lemma we only need to prove that

−H
(0,2)
d (x, 1) = −dxH

(1,1)
d (x, 1). (3.8)

We use (3.7) as a stepping stone for proving (3.8). By taking the derivative of (3.7)
with respect to x and evaluating subsequently at y = 1, it is not hard to see that

− dxH
(1,1)
d (x, 1)

= d(d− 1)xFd−1(x, 1) + dx (2 + (d− 3)x)F
(1,0)
d−1 (x, 1) + dx2 (1− x)F

(2,0)
d−1 (x, 1).

Similarly, by taking the derivative of (3.7) with respect to y and substituting y = 1,
we obtain

−H
(0,2)
d (x, 1) = d(d− 1)xFd−1(x, 1) + 2 ((d− 1)x+ 1)F

(0,1)
d−1 (x, 1)

+ 2x (1− x)F
(1,0)
d−1 (x, 1) + 2x (1− x)F

(1,1)
d−1 (x, 1) + x2 (1− x)F

(2,0)
d−1 (x, 1). (3.9)
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Now, using the induction hypothesis, we can show that

F
(1,1)
d−1 (x, 1) =

∂

∂x
F

(0,1)
d−1 (x, 1) =

∂

∂x

(d− 1)x

2
F

(1,0)
d−1 (x, 1)

=
d− 1

2
F

(1,0)
d−1 (x, 1) +

(d− 1)x

2
F

(2,0)
d−1 (x, 1).

Substituting this into (3.9) and comparing the formula to that for −dxH
(1,1)
d (x, 1),

we obtain (3.8) and therefore the lemma is proven. �

3.4. Generating functions for sd(n) and rd(n). Here we recall the generating
functions for sd(n) and rd(n), each of which were proven in [16]. Firstly, for sd(n)
Theorem 1.2 of [16] gives that

∑

n≥0

sd(n)q
n =

∏

n≥1

Ad (q
n)

(1− qn)d+1
. (3.10)

We also require the generating function for rd(n), proven in Theorem 1.1 of [16],

∑

n≥0

rd(n)q
n =

∏

n≥1

Fd

(
q(d+1)(n−1)+1, q

)

1− qn
. (3.11)

3.5. Evaluating integrals. In the process of evaluating the constants in our main
theorems, the evaluation of certain integrals is paramount. In order to evaluate these
integrals, we need the dilogarithm function defined for |z| ≤ 1 by

Li2 (z) :=
∑

n≥1

zn

n2

and on C \ [1,∞) by the analytic continuation (see [27, page 5])

Li2 (z) := −
∫ z

0

log(1− u)
du

u
.

For many interesting properties of this function, see [27]. We now prove a proposition
to evaluate certain integrals.

Proposition 3.5. Let P (x) =
∏d

j=1 (x− αj) ∈ R[x] be a monic polynomial of degree

d ∈ N such that P (0) = 1 and such that P (x) has no zeros on the interval [0, 1].
Define the integrals

IP :=

∫ ∞

0

Log
(
P (e−x)

)
dx.
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Then we have

IP = −
d∑

j=1

Li2

(
1

αj

)
.

Proof. Observe firstly that the assumptions that P is monic, that P (0) = 1 and that
P (x) has no zeros in the interval [0, 1] imply that IP converges. Using integration by
parts, we obtain

IP =

∫ ∞

0

xe−xP ′(e−x)

P (e−x)
dx.

By further substituting u = e−x, we obtain

IP = −
∫ 1

0

log(u)
P ′(u)

P (u)
du.

Since P is a monic polynomial, we have

P ′(u)

P (u)
=

d∑

j=1

1

u− αj

,

and therefore

IP = −
d∑

j=1

∫ 1

0

log(u)

u− αj

du.

We now consider for a 6∈ [0, 1] the integrals

I(a) :=

∫ 1

0

log(u)

u− a
du.

We claim that I(a) = Li2(
1
a
). Because Li2(z) is analytic in C \ [1,∞) (see [27]),

both sides of this formula are analytic functions of a away from [0, 1], and therefore
to prove our claim we only need to prove its truth in the region a > 1. Here, the
identity d

du
Li2 (u) = − 1

u
log (1− u) is valid for |u| < 1 because of the series expansion

of Li2(u), and so it is straightforward to show that

d

du

(
Li2

(u
a

)
+ log(u) log

(
1− u

a

))
=

log(u)

u− a

for a > 1. Since Li2(0) = 0 and log(u) log(1− u
a
) → 0 as u → 0+, we therefore obtain

for a > 1 that
∫ 1

0

log(u)

u− a
du = Li2

(
1

a

)
,
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and by analytic continuation the identity holds for a ∈ C\[0, 1]. Since the polynomial
P has no zeros in the interval [0, 1], the claim follows. �

4. Proof of Theorem 1.1

In this section we prove Theorem 1.1. Recall the generating function for sd(n) in
(3.10). To ease notation, we define

Fd(q) :=
∏

n≥1

Ad (q
n) .

We begin with a preparatory lemma on the asymptotic of Fd(q).

Lemma 4.1. As w → 0 in Dθ, we have

Fd

(
e−w

)
=

e
Cd
w

+ d−1
24

w

√
d!

(
1 +O

(
wN

))

for any N ∈ N.

Proof. Let

Fd(q) := Log(Fd(q)) =
∑

n≥1

Log (Ad (q
n)) ,

where throughout we use the principal branch of the logarithm. Then

Fd

(
e−w

)
=

∑

n≥1

fd(nw),

where
fd(z) := Log

(
Ad

(
e−z

))
.

Note that by (3.4) we have Ad(1) = d! > 0, that by (3.2) we have Ad(0) = 1, and
that Ad(e

−w) is holomorphic in w. Therefore, in the limit w → 0 (i.e., for |w| suitably
small) we have that Ad(e

−nw) is arbitrarily close to d!, and avoids the branch of the
complex logarithm on the cut (−∞, 0].

Recall that Ad(x) has no roots on the interval [0, 1] by Lemma 3.1. Applying
Proposition 2.1 gives that for w → 0 in Dθ we have that

Fd

(
e−w

)
∼ Ifd

w
−

∑

n≥0

Bn+1(1)

(n+ 1)!
f
(n)
d (0)wn. (4.1)

We adopt the usual convention that f(z) ∼ ∑
n≥−1 anz

n means that for each N ≥ −1,

we have f(z) =
∑N

n=−1 anz
n +O(zN+1).

To determine the term n = 0, we compute, using (3.4),

fd(0) = log(Ad(1)) = log(d!).
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Thus the term n = 0 in (4.1) equals − log(d!)
2

. We next determine the term n = 1. By
definition

f ′
d(0) =

[
∂

∂z
log

(
Ad

(
e−z

))]

z=0

= −A′
d(1)

Ad(1)
.

Using (3.4) and (3.5), we obtain d−1
24

for the term n = 1. Plugging into (4.1) we
therefore obtain

Fd

(
e−w

)
∼ Ifd

w
− log(d!)

2
+

d− 1

24
w +O

(
w2

)
.

We are left to show that the asymptotic expansion has no further terms than the
three given on the right-hand side. Using (6.2), it is not difficult to show that

f ∗
d (z) := fd(z) +

d− 1

2
z = log

(
Ad

(
e−z

))
+

d− 1

2
z

is an even function. Therefore, in (4.1) only the term n = 1 and n even terms survive.
However, for n ≥ 2 even it is well-known that Bn+1(1) = 0, and thus only the terms
n = 0 and n = 1 in the sum of (4.1) contribute to the asymptotic. Combining these
observations gives the claim. �

We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1. Recall the generating function in (3.10). Using (3.1) and
Lemma 4.1, we have as w → 0 in Dθ that

∑

n≥0

sd(n)e
−nw ∼

(√
w

2π
e

π2

6w

)d+1
e

Cd
w

+ d−1
24

w

√
d!

∼ 1

(2π)
d+1
2

√
d!
w

d+1
2 e

(

Cd+
π2(d+1)

6

)

1
w .

Plugging into Proposition 2.3, with λ = 1

(2π)
d+1
2

√
d!

, β = d+1
2

, and γ = Cd +
π2(d+1)

6

then gives the claimed asymptotic for sd(n). �

Using similar techniques, it is not hard to prove the following theorem for a general
class of polynomials. Note that in general we do not obtain a terminating asymptotic
expansion.

Theorem 4.2. Let P (x) ∈ R[x] be a monic polynomial with P (0) = 1, P (1) > 0, and
assume that P has no zeros in [0, 1]. Let H(q) :=

∏
n≥1 P (qn). Denote the Fourier

coefficients of H(q) by c(n). Suppose that c(n) are non-negative and weakly increasing
for n ≫ 0. Define

CP :=

∫ ∞

0

log
(
P (e−x)

)
dx.
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Then as n → ∞ we have that

c(n) ∼ C
1
4
P

2
√
πP (1)n

3
4

e2
√
CPn.

Remarks.

(1) One may use Proposition 3.5 to obtain that

CP = −
d∑

j=1

Li2

(
1

αj

)
,

where the sum runs over all roots αj of P counted with multiplicity.
(2) The results can be extended immediately to products of rational functions, pro-
vided the numerator and denominator satisfy the hypotheses. This is done in more
generality in Theorem 5.3. One could also avoid the need for monotonicity of the
coefficients if stronger asymptotic properties away from q → 1 are derived.
(3) For certain choices of polynomial P , it is not hard to see that the sum of diloga-
rithms defining CP simplifies considerably. For example, let ℓ be a fixed prime. If P
is chosen to be the ℓ-th cyclotomic polynomial Φℓ, the roots are precisely all of the
primitive ℓ-th roots of unity. Then using the distribution property for dilogarithms
(see e.g. [27, page 9]), we recover the ℓ-regular partition asymptotic. This agrees
with the asymptotic arising from the ℓ-regular partition generating function

∏

n≥1

Φℓ(q
n) =

∏

n≥1

1− qℓn

1− qn

where the asymptotic for the coefficients of the right-hand side can be evaluated
using standard techniques - see e.g. [14]. We discuss the possibility of finding simpler
expressions for CP in more generality in Section 6.

5. Proof of Theorem 1.2

In this section we prove Theorem 1.2. Recall the generating function for rd(n) given
in (3.11). To ease notation, we let

Gd(q) :=
∏

n≥0

Fd

(
q(d+1)n+1, q

)
,

where Fd(x, y) is defined in Subsection 2.3.
We again being with a preparatory lemma on the asymptotic of Gd(q).
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Lemma 5.1. As w → 0 in Dθ, we have that

Gd

(
e−w

)
∼ e

Cd
(d+1)w

+( 1
2
− 1

d+1)d!

(d!)
d

2(d+1)

.

Proof. We have

Gd(q) := Log(Gd(q)) =
∑

n≥0

Log
(
Fd

(
q(d+1)n+1, q

))
.

Write

Gd

(
e−w

)
=

∑

n≥0

gd,w

((
n +

1

d+ 1

)
(d+ 1)w

)
,

where

gd,w(x) := Log
(
Fd

(
e−z, e−w

))
.

Observe that Fd(0, 0) = 1 and that by Lemma 3.3, Fd (e
−tw, e−w) does not vanish

for |w| small and t ∈ R+
0 . Note that by Lemma 3.2 and (3.4) we have that Fd(1, 1) =

Ad(1) = d! > 0 and that Fd(e
−tw, e−w) is holomorphic in w for t ∈ R+

0 . Therefore, in
the limit w → 0 (i.e., for |w| suitably small) we again avoid the branch of the complex
logarithm on the cut (−∞, 0].

Then applying Proposition 2.2 with N = 2 gives that

Gd

(
e−w

)
=

Igd,w
(d+ 1)w

−
1∑

n=0

Bn+1

(
1

d+1

)
g
(n)
d,w (0)

(n+ 1)!
(d+ 1)nwn

− 1

d+ 1

∑

k≥2

g
(k)
d,w(0)

(k + 1)!
wk − w2

2πi

1∑

n=0

(d+ 1)nBn+1(0)

(n+ 1)!

∫

CR(0)

g
(n)
d,w(z)

z2−n(z − w)
dz

− (d+ 1)w

2

∫ w∞

w

g′′d,w(z)B̃2

(
z

(d+ 1)w
− 1

d+ 1

)
dz. (5.1)

The main asymptotic contribution comes from the term

Igd,0
(d+ 1)w

=
Cd

(d+ 1)w

by Lemma 3.2.
The constant term in (5.1) is

I[ ∂
∂w

gd,w]
w=0

d+ 1
−B1

(
1

d+ 1

)
gd,0(0).
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We have by Lemma 3.2 and (3.4) that

gd,0(0) = Ad(1) = d!.

We then compute
[
∂

∂w
gd,w(x)

]

w=0

=

[
∂

∂w
log

(
Fd

(
e−x, e−w

))]

w=0

= −F
(0,1)
d (e−x, 1)

Fd (e−x, 1)
.

Using Lemma 3.4 we therefore obtain that

I[ ∂
∂w

gd,w]
w=0

dx = −
∫ ∞

0

F
(0,1)
d (e−x, 1)

Fd (e−x, 1)
dx =

d

2

∫ ∞

0

∂
∂x
Fd(e

−x, 1)

Fd (e−x, 1)
dx

=
d

2

∫ ∞

0

∂

∂x
log

(
Fd

(
e−x, 1

))
dx =

d

2
(log(Fd(0, 1))− log(Fd(1, 1))).

We now claim that Fd(0, 1) = 1. By Lemma 3.2, we have Fd(0, 1) = Ad(0). We plug
into (3.3) and obtain

Ad(0) = Ad−1(0) = 1,

as A1(0) = 1. Moreover, again by Lemma 3.2 and (3.4), we have

Fd(1, 1) = Ad(1) = d!.

Thus,

I[ ∂
∂w

gd,w]
w=0

= −d

2
log(d!).

So the constant term in (5.1) is equal to

−d log(d!)

2(d + 1)
+

(
1

2
− 1

d+ 1

)
d!.

Exponentiating gives the claim, noting that the remaining terms go into the error. �

We are now in a position to prove Theorem 1.2.

Proof of Theorem 1.2. Recall the generating function for rd(n) in (3.11). We then
use Lemma 5.1 and (3.1) to obtain that

∑

n≥0

rd(n)e
−nw ∼

√
w

2π
e

π2

6w
e

Cd
(d+1)w

+( 1
2
− 1

d+1)d!

(d!)
d

2(d+1)

=
e

d−1
2(d−1)

d!

√
2π(d!)

d
2(d+1)

√
we

(

Cd
d+1

+π2

6

)

1
w

as w → 0 in Dθ. Applying Proposition 2.3 with λ = (2π)−
1
2 e

d−1
2(d+1)

d!
d!

− d
2(d+1) , β = 1

2
,

and γ = Cd

d+1
+ π2

6
gives the claim. �
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We note here that asymptotic “tricks” used to prove Theorem 1.2 can be generalized
quite broadly. The main point is that Lemma 5.1 can be greatly generalized to many
products of the form

∏
n≥0 P (qn, q) where P (x, y) ∈ R[x, y]. The basic idea is to take

a logarithm in order to reduce the question to asymptotics for Log (P (e−nz, e−z)).
The main idea of our method is to use the Euler–Maclaurin formula as stated in
Proposition 2.2 to give an exact formula for Log (P (e−z, e−w)) for w fixed. Then,
suitable holomorphic properties of this expression permit the substitution w = z as
z → 0, and we can then compute suitable asymptotics as z → 0. We execute these
objectives in the following two results.

Lemma 5.2. Let P ∈ R[x, y] be a polynomial such that P (1, 1) > 0, P (0, 1) = 1, and
such that P (x, 1) has no zeros for 0 ≤ x ≤ 1. Let a, b ∈ N with 0 ≤ a < b and

GP (q) :=
∏

n≥0

P
(
qbn+a, q

)
.

Then in each region Dθ with 0 < θ < π
2
, we have as w → 0 in Dθ that

GP

(
e−w

)
∼ P (1, 1)

1
2
− a

b eDP · e
CP
bw

where we define P(x) := P (x, 1), CP as in Theorem 4.2 and

DP := I[ ∂
∂w

gP,w]
w=0

= −
∫ ∞

0

P (0,1) (e−x, 1)

P (e−x, 1)
dx.

Proof. We consider GP (q) := Log (GP (q)). Then we have

GP

(
e−w

)
=

∑

n≥0

gP,w

((
n+

a

b

)
bw

)
,

where for any fixed w we define

gP,w (z) := Log
(
P
(
e−z, e−w

))
.

As in previous results, the conditions we assume for P (x, y) ensure that gP,w(z) satis-
fies the analytic conditions necessary for convergence of GP (e−w) and the application
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of Proposition 2.2. By applying Proposition 2.2 in this setting, we see that

GP

(
e−w

)
=

IgP,w

bw
−

1∑

n=0

Bn+1

(
a
b

)
g
(n)
P,w (0)

(n + 1)!
(bw)n

− 1

b

∑

k≥2

g
(k)
P,w(0)a

k+1

(k + 1)!
wk − (bw)2

2πi

1∑

n=0

(
a
b

)2−n
Bn+1(0)

(n+ 1)!

∫

CR(0)

g
(n)
P,w(z)

z2−n(z − aw)
dz

+
bw

2

∫ w∞

aw

g′′P,w(z)B̃2

( z

bw
− a

b

)
dz.

In order to apply Proposition 2.3, we need the terms up through the constant term
in w of this expansion; we see that

GP

(
e−w

)
=

IgP,w

bw
− B1

(a
b

)
gP,w(0) +O (w)

=
CP
bw

+DP +

(
1

2
− a

b

)
Log (P (1, 1)) +O(w).

This completes the proof. �

On the basis of this lemma, we can prove asymptotic formulas for the coefficients
of these very general rational products.

Theorem 5.3. Let P,Q ∈ R[x, y] be polynomials such that P (1, 1), Q(1, 1) > 0,
P (0, 1) = Q(0, 1) = 1, and such that P (x, 1) and Q(x, 1) have no zeros for 0 ≤ x ≤ 1.
Let

H(q) :=
∑

n≥0

c(n)qn :=
∏

n≥0

P
(
qAn+a, q

)

Q (qBn+b, q)
,

and suppose that for n ≫ 0 the c(n) are increasing functions. Then as long as
CP
A

> CQ
B

, we have, as n → ∞,

c(n) ∼
λP,Q,a,A,b,B · C

1
4
P,Q,A,B

2
√
πn

3
4

e2
√

CP,Q,A,Bn,

where we define

CP,Q,A,B :=
CP
A

− CQ
B

> 0, DP,Q := DP −DQ,

λP,Q,a,A,b,B := P (1, 1)
1
2
− a

AQ(1, 1)
b
B
− 1

2 eDP,Q.
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Proof. Because we assume that c(n) is increasing for n ≫ 0, we need only calculate
suitable asymptotics as z → 0 in regions Dθ for certain 0 < θ < π

2
. From Lemma 5.2

we obtain
∏

n≥0

P
(
qAn+a, q

)

Q (qBn+b, q)
∼ P (1, 1)

1
2
− a

AQ(1, 1)
b
B
− 1

2 · e
(

CP
A

−
CQ
B

)

1
w
+DP,Q.

This completes the proof by Proposition 2.3 with λ = λP,Q,a,A,b,B, β = 0, and γ =
CP,Q,A,B > 0. �

6. Final Remarks

6.1. Applications in mathematical physics. There are potential applications of
our method to the computation of asymptotic formulas for coefficients of thermal
partition functions in super Yang–Mills theory [1, 11, 21]. For example the partition
functions in [1, equation (5.10)], [11, equation (2.6)], and [21, equation (7.3)], can
all be treated with this approach. These partition functions often take the form of
infinite products over rational functions evaluated at qn. Asymptotic formulas for
these partition functions can be used to derive information about the entropy of
the relevant system. Although the physics literature does contain some elementary
methods for computing asymptotics for these coefficients, our method is capable of
vast generalization. In particular, since our asymptotic method is based upon the
exact formula given in Proposition 2.2, one could compute asymptotics to much higher
degrees of precision, and therefore obtain more accurate entropies.

6.2. Dilogarithms and Bloch groups. Let P be a polynomial of degree d with
integral coefficients with P (0) = 1 and no roots in the interval [0, 1]. If α1, α2, . . . , αd ∈
C\[0, 1] are the zeros of P , then by Proposition 3.5 we have

CP = −
d∑

j=1

Li2

(
1

αj

)
.

It is natural to ask whether there is a simpler representation for CP . Since the values
1
αj

are the zeros of the reciprocal polynomial zdP (1
z
), we reframe this question in the

following slightly more general way.

Question. Let P (z) ∈ Z[z] be a monic polynomial. Then under what circumstances
does the value ∑

P (α)=0

Li2 (α)

simplify in some sense?
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It has been pointed out to the authors by Zagier that this somewhat vague question
is closely connected to the so-called Bloch group. This is defined in terms of the
Bloch–Wigner dilogarithm function

D(z) := Im (Li2(z)) + Arg (1− z) log |z|,
which is real-analytic for z ∈ C\{0, 1} and satisfies

D(z) = −D(1− z) = −D

(
1

z

)

along with a five-term relation [27, p. 11]

D (x) +D (y) +D

(
1− x

1− xy

)
+D (1− xy) +D

(
1− y

1− xy

)
= 0.

Motivated by connections to the volumes of hyperbolic 3-manifolds (as explained in
[27]), Bloch defined a group structure based on this functional equation. To be more
precise, the Bloch group of a field L ⊆ Q, denoted BL, is defined as all formal linear
combinations of symbols [α] , α ∈ L× \ {1} subject to the relations

[x] +

[
1

x

]
= [x] + [1− x] = [x] + [y] +

[
1− x

1− xy

]
+ [1− xy] +

[
1− y

1− xy

]
= 0.

Now, BL is certainly abelian and countable, its rank is the number of pairs of complex
embeddings of L into C, and nontrivial elements are easy to produce [27, p. 15–16].
Torsion elements have been well-studied, and the basic result is that for ξ ∈ L,
we have [ξ] ∈ BL is torsion if and only if D (ξσ) = 0 for all complex embeddings
σ ∈ Gal (L/Q) (see Section B on page 36 of [27]). If we compare this fact with
the properties of the so-called Rogers dilogarithm [27, p. 23], then we see that this
is equivalent to Li2 (ξ) ∈ log(Q)⊗2, that is, that Li2 (ξ) can be expressed as linear
combinations of forms log (α) log (β) for α, β ∈ Q. Therefore, the previous question
about simplified values of CP motivates the following question:

Question. Let P ∈ Z[x] be a monic polynomial with splitting field L. Then under
what circumstances is ∑

P (α)=0

[α] ∈ BL

a torsion element in the Bloch group BL, and if it is torsion, what is its order?

For the Eulerian polynomials Ad(x) in particular, by using and the dilogarithm

identity Li2(x) + Li2
(
1
x

)
= −ζ(2) − log(−x)2

2
, it can be shown that CAd

is, up to

an explicit multiple of ζ(2), an element of log
(
Q
)⊗2

. It would be quite interesting
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to understand this question more deeply using the tools of Bloch groups and the
dilogarithm identities.
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